

Resultados de aplicación de los pasos 1, 2, 3, 4 y 5 de la metodología establecida en el Reglamento del Mercado Eléctrico Regional.

Elaborado por:	Ente Operador Regional - EOR
Dirigido a:	OS/OM y Agentes del MER
Asunto:	Informe final IDENTIFICACIÓN DE LA RED DE TRANSMISIÓN REGIONAL PARA EL AÑO 2020
Fecha:	29 de noviembre de 2019

CONTENIDO

MARCO REGULATORIO	3
Tratado Marco del Mercado Eléctrico de América Central	3
Segundo Protocolo al Tratado Marco	3
Reglamento del Mercado Eléctrico Regional	3
CONSIDERACIONES GENERALES	4
Programas de simulación y bases de datos	4
Sistema de Interconexión Eléctrica de los Países de América Central (SIEPAC)	5
Enlace Extra Regional con el sistema eléctrico de México	5
ELEMENTOS DE LA RTR PARA EL AÑO 2020	5
Primer Paso. RTR Básica	5
Segundo Paso. Nodos de Control	8
Tercer Paso. RTR Preliminar	18
Cuarto Paso. Líneas que complementan la RTR Preliminar	50
Quinto Paso. Verificación por el EOR y OS/OM	53
DIAGRAMAS UNIFILARES DE CADA AREA DE CONTROL	57

MARCO REGULATORIO

Tratado Marco del Mercado Eléctrico de América Central

Artículo 12. Las redes de transmisión, tanto regional como nacional, serán de libre acceso a los agentes del Mercado. Los cargos por el uso y disponibilidad de las redes regionales serán aprobados por la CRIE, y los cargos por el uso y disponibilidad de las redes nacionales serán aprobados por el ente regulador nacional, y no serán discriminatorios para su uso en función regional.

Segundo Protocolo al Tratado Marco

Artículo 4. Reformar el artículo 12 del Tratado del Mercado Eléctrico Regional, adicionando un segundo párrafo el que se leerá así:

"Los sistemas interconectados nacionales de la región, que conjuntamente con las líneas de interconexión existentes y futuras entre los países miembros posibilitan las transferencias de energía y las transacciones en el Mercado Eléctrico Regional, integran la red de transmisión regional".

Reglamento del Mercado Eléctrico Regional

Libro III Numeral 2. "La Red de Transmisión Regional"

- 2.1 Instalaciones que conforman la RTR
- 2.1.1 El EOR será el responsable de la identificación y actualización de la definición de la RTR, por medio del Sistema de Planificación de la Transmisión Regional (SPTR). Con tal propósito realizará anualmente las tareas conducentes a identificar los componentes actuales y futuros de la RTR.
- 2.1.2 La RTR incluirá como mínimo las líneas de transmisión que vinculan a los Países Miembros, las ampliaciones planificadas incluyendo las instalaciones de la línea SIEPAC y las instalaciones propias de cada país que resulten esenciales para cumplir con los objetivos que se establecen en el siguiente artículo.
- 2.1.3 La definición de la RTR es utilizada para:
- a) Especificar los nodos desde los que se pueden presentar ofertas para transacciones de oportunidad en el MER o entre aquellos en los cuales se pueden declarar contratos regionales;
- b) Identificar los nodos entre los cuales se pueden asignar DT y verificar la calidad de servicio;

- c) Definir el conjunto mínimo de instalaciones observables en las cuales el EOR puede ejercer acciones de control por medio de los OS/OM;
- d) Establecer y calcular los CURTR y los CVT.
- 2.2 Método de Identificación de las Instalaciones de la RTR
- 2.2.1 El método de identificación de la RTR contempla cinco (5) pasos, que serán realizados por el EOR, en coordinación con los OS/OM, tal como se describe en el Anexo A del RMER:
- a) Definición de la RTR básica a partir de las interconexiones regionales y de las Ampliaciones Planificadas, incluyéndose la línea SIEPAC cuando ésta entre en servicio;
- b) Identificación de los nodos de control, en los que cada OS/OM informará las transacciones al MER y a través de los cuales se establecerá la interfaz entre el MER y los Mercados Eléctricos Nacionales;
- c) La unión topológica de los elementos identificados en (a) y (b) por medio de líneas u otros elementos de transmisión;
- d) Identificación de otras líneas que, por los criterios de utilización determinados en el Anexo A, deban también incluirse en la RTR;
- e) El EOR en coordinación con los OS/OM nacionales, basándose en estudios regionales de seguridad operativa, podrá añadir elementos a los ya identificados en los pasos "a-d" cuando estos se muestren necesarios para cumplir con los CCSD.

CONSIDERACIONES GENERALES

Las consideraciones tomadas en cuenta en la aplicación de la metodología de identificación de la RTR para el año 2020 son las siguientes:

Programas de simulación y bases de datos

La numeración y los nombres para los elementos de la RTR, que se muestran en este documento, han sido tomados de la base de datos regional del PSS/E aplicables para el escenario de época lluviosa del año 2020.

Es importante mencionar que en la base de datos del PSS/E hay líneas que se modelan con el criterio de "Impedancia Cero", estos elementos no son líneas de transmisión, sino que son dispositivos que sirven para unir dos buses en un mismo nivel de voltaje en una misma subestación, por lo que no deben considerarse como líneas de transmisión.

La metodología para la identificación de la RTR, en su cuarto paso, establece que se deberá utilizar un modelo de planeamiento operativo para realizar las simulaciones. Para la identificación de la RTR para el año 2020, se consideró lo siguiente:

- a) El modelo de planeamiento operativo utilizado es el SDDP, el cual forma parte del Sistema de Planeamiento de la Generación y Transmisión Regional (SPTR).
- b) La base de datos utilizada en la metodología fue actualizada con información proporcionada por los OS/OM durante los meses de enero a mayo del presente año, de acuerdo a lo establecido en la "Guía para Conformación y Actualización de la Base de Datos para los Procesos de la Planificación de la Transmisión y de la Generación Regional".
- c) La base de datos mencionada, contiene el detalle completo de las redes de transmisión nacionales y los datos de generación y demanda informadas por los OS/OM.
- d) Los límites de transferencias considerados en el SDDP fueron definidos en base a los estudios de Máximas Capacidades de Transferencia de Potencia elaborados por el EOR en coordinación con los OS/OM, más recientes y representativos de las estaciones de verano e invierno para cada país, correspondiendo a los informes de los meses de abril y noviembre 2019, respectivamente.

Sistema de Interconexión Eléctrica de los Países de América Central (SIEPAC)

En la identificación de la RTR para el año 2020, se incluyeron en los análisis y bases de datos, los tramos y subestaciones de la línea SIEPAC, con base en lo informado oficialmente por los OS/OM en sus respectivas bases de datos nacionales.

Enlace Extra Regional con el sistema eléctrico de México

Con base en lo establecido en la regulación regional vigente, no se ha considerado como parte de la RTR básica para el año 2020, el tramo de línea de interconexión a 400 kV entre la subestación Los Brillantes 400/230 kV en el área de control de Guatemala y la frontera con México.

ELEMENTOS DE LA RTR PARA EL AÑO 2020

Primer Paso. RTR Básica

Los nodos a incluir en la RTR básica son los nodos y líneas que forman parte de las interconexiones regionales existentes a niveles de tensión mayores de 115 kV y los tramos de la línea SIEPAC que se encuentran en servicio y los que entrarán en operación para el año 2020. A continuación, se listan

los elementos de transmisión que forman parte de la RTR 2020 básica, para cada sistema eléctrico nacional de la región.

Tabla 1. Nodos pertenecientes a la RTR Básica

País	Nodo	Voltaje (kV)	No. Bus (PSS/E)	Nombre (PSS/E)
	Moyuta	230	1125	MOY-230
	Aguacapa	230	1101	AGU-230
Guatemala	La Vega II	230	1124	LVG-230
Guatemala	Guatemala Norte	230	1108	GNO-231
	San Agustín	230	1771	SAS-230
	Panaluya	230	1710	PAN-230
	Ahuachapán	230	28161	AHUA-230
El Salvador	15 de Septiembre	230	28181	15SE-230
	Nejapa	230	28371	NEJA-230
	Agua Caliente	230	3301	AGC B624
	Nueva Nacaome	230	3211	NNC B639
	Prados	230	3310	PRD B618
Honduras	Torre 43 AMT	230	30002	T43 AMT
	Torre 43 CJN	230	30001	T43 CJN
	La Entrada Copan	230	3183	LEC B619
	San Buenaventura	230	3300	SBV B609
	León I	230	4403	LNI-230
	Amayo	230	4750	AMY-230
Ni sava sus	Masaya	230	4404	MSY-230
Nicaragua	La Virgen	230	4800	LVG-230
	Sandino	230	4402	SND-230
	Ticuantepe	230	4406	TCP-230
	171	230	50000	LIB230A
	Liberia	230	50002	LIB230B
			56050	RCL230A
Costa Rica	Río Claro	230	56052	RCL230B
	Cahuita	230	58350	CAH230
	Cañas	230	50050	CAS230A
	Cañas	230	50052	CAS230B

	Parrita	230	54000	PAR230A
	Jacó	230	51450	JAC230A
	Dalaran		56100	PAL230A
	Palmar	230	56102	PAL230B
	Progreso	230	6014	PRO230
Panamá	Veladero	230	6182	VEL230
Гапаша	Changuinola	230	6260	CHA230
	Dominical	230	6440	DOM230

No se consideraron como nodos de la RTR básica, los nodos ficticios incluidos en las bases de datos para representar puntos frontera de las interconexiones.

Tabla 2. Líneas de interconexión pertenecientes a la RTR Básica.

Línea de interconexión	Voltaje (kV)	Países
Moyuta – Ahuachapán	230	Guatemala – El Salvador
15 de Septiembre - Nueva Nacaome	230	El Salvador - Honduras
Prados – León I	230	Honduras - Nicaragua
Amayo – Liberia	230	Nicaragua – Costa Rica
Río Claro – Progreso	230	Costa Rica - Panamá
Cahuita – Changuinola	230	Costa Rica - Panamá

Tabla 3. Tramos de la Línea SIEPAC pertenecientes a la RTR Básica.

Tramo Línea SIEPAC	Voltaje (kV)	Países
La Vega II – Ahuachapán	230	Interconexión Guatemala –El Salvador
La Vega II – Aguacapa circuito 01	230	Guatemala
Guatemala Norte – San Agustin	230	Guatemala
San Agustin - Panaluya	230	Guatemala
Panaluya – La Entrada Copan	230	Interconexión Guatemala - Honduras
La Entrada Copan - San Buenaventura	230	Honduras
Ahuachapán – Nejapa circuito 02	230	El Salvador
15 de Septiembre – Nejapa circuito 02	230	El Salvador
15 de Septiembre – Agua Caliente	230	Interconexión Honduras – El Salvador
Torre 43 CJN – San Buenaventura[1]	230	Honduras
Torre 43 AMT – San Buenaventura[2]	230	Honduras

Agua Caliente – Sandino	230	Interconexión Honduras - Nicaragua
Sandino – Ticuantepe	230	Nicaragua
Masaya – La Virgen	230	Nicaragua
Ticuantepe – Cañas	230	Interconexión Nicaragua – Costa Rica
Cañas – Jacó	230	Costa Rica
Jacó – Parrita	230	Costa Rica
Parrita - Palmar circuito 10	230	Costa Rica
Río Claro – Palmar circuito 10	230	Costa Rica
Río Claro – Dominical	230	Interconexión Costa Rica - Panamá
Dominical - Veladero	230	Panamá

Segundo Paso. Nodos de Control

El paso 2 de la metodología "Identificación de los nodos de control", establece:

"Los Nodos de Control en cada sistema eléctrico nacional son los nodos más cercanos eléctricamente al nodo terminal de una interconexión (sin incluirlo) donde los Agentes pueden hacer ofertas al MER, y el OS/OM puede controlar la inyección/retiro de energía en forma independiente de otros nodos.

Estos nodos corresponden a los nodos donde un generador o un área del sistema compuesta por un conjunto de generadores y cargas, se conectan de forma radial al sistema mallado. Cuando existan grandes usuarios con una capacidad comprobada de controlar su demanda, los nodos donde estos se conecten al sistema mallado se pueden también incorporar a esta definición.

Los Nodos de Control estarán limitados a los dos niveles de tensión más altos en cada país.

La identificación de los Nodos de Control será realizada examinando la topología de la ubicación de los generadores y puntos donde los Agentes puedan hacer ofertas al MER y puedan controlar la inyección/retiro de energía".

A continuación, se listan los nodos de control identificados, para cada sistema eléctrico nacional de la región.

Tabla 4. Nodos de control del sistema eléctrico de Guatemala

		Nodo)		
País	Nombre	Volta je (kV)	No. Bus (PSS/ E)	Nombre (PSS/E)	Observaciones
GUA	Alborada	230	1102	ALB-230	Recibe generación de forma radial de las plantas, Enron, Sidegua, y Tampa.
GUA	Chixoy II	230	1141	CHX-233	Recibe generación de forma radial de las planta Chixoy.
GUA	Escuintla	230	1106	ESC-231	Recibe generación de forma radial de las plantas, La Palma.
GUA	Guatemala Sur	230	1109	GSU-231	Recibe generación de la Central Las Vacas
GUA	San Joaquín	230	1120	SJQ-230	Recibe generación de forma radial de la planta Arizona.
GUA	Panzos	230	1133	PNZ-230	Nodo que tiene asociados generación. A este nodo se conecta radialmente la generación de OXE-H2
GUA	Tac Tic	230	1444	TIC-231	Recibe generación de forma radial de la planta Renace.
GUA	Pacifico	230	1140	PAC-230	Recibe generación de forma radial de la planta, San José
GUA	Palo Gordo	230	1145	PGO-231	Recibe generación de forma radial de la planta, Palo Gordo
GUA	Ingenio la Unión	230	1165	LUN-230	Recibe generación de forma radial de la planta Ingenio la Unión.
GUA	Ingenio Santa Ana	230	1166	SAA-230	Recibe generación de forma radial de la planta, Ingenio Santa Ana.
GUA	Pantaleón	230	1168	PNT-230	Recibe generación de forma radial de la planta Ingenio Pantaleón
GUA	San Antonio el Sitio	230	1170	SNT-230	Recibe generación de forma radial de la planta San Antonio el Sitio.
GUA	Ingenio Magdalena	230	1219	MAG-230	Recibe generación de forma radial de la planta Ingenio Magdalena.
GUA	Covadonga	230	1840	COV-230	Recibe generación de forma radial de la planta Hidro Xacbal e Hidro Xacbal Delta.
GUA	Uspatan	230	1845	USP-230	Recibe generación de forma radial de la planta Palo Viejo H1,H2.

Tabla 5. Nodos de control del sistema eléctrico de El Salvador.

		Nod	0		
País	Nombre	Voltaje (kV)	No. Bus (PSS/E)	Nombre (PSS/E)	Observaciones
SAL	5 de Noviembre	115	27101	5NOV-115	Recibe generación en forma radial de la C.H. 5 de Noviembre. No se alimenta demanda en este nodo.
			27131	ACAJ-115	Recibe generación en forma radial de las plantas
SAL	Acajutla	115	27132	ACAJ2- 115	Orazul-Acajutla y Termopuerto, así como de las Plantas Solares La Trinidad solar (34 MW)
SAL	Ahuachapán	115	27161	AHUA-115	Recibe generación de forma radial de la C.G. Ahuachapán; también se alimenta demanda desde este nodo
SAL	Cerrón Grande	115	27171	CGRA-115	Recibe Generación de la C.H. Cerrón Grande, también se alimenta demanda desde este nodo.
SAL	15 de Septiembre	115	27181	15SE-115	Recibe generación de forma radial de la C.H. 15 de Septiembre, también se alimenta demanda desde este nodo.
SAL	Berlín	115	27211	BERL-115	Recibe generación en forma radial de la C.G. Berlín. No se alimenta demanda en este nodo.
SAL	Chinchontepec	115	27281	CHIN-115	Nodo que recibe generación de la planta Jiboa. No se alimenta demanda en ese nodo
SAL	Soyapango	115	27301	SOYA-115	Nodo que tiene demanda asociada y recibe generación de la planta Orazul Soyapango y Textufil 1
SAL	San Miguel	115	27341	SMIG-115	Recibe generación de forma radial del Ingenio Chaparrastique desde la subestación Havillal, también se alimenta demanda desde este nodo.
SAL	Santa Ana	115	27351	SANA-115	Recibe generación en forma radial de la C.H. Guajoyo y Planta Holcim. También se alimenta demanda desde este nodo

SAL	Nejapa	115	27371	NEJA-115	Recibe generación de la planta Nejapa Power, Ingenio El Ángel y central Hilcasa Energy. También se alimenta demanda en este nodo
SAL	Opico	115	27381	OPIC-115	Recibe generación de las plantas La Cabaña y Borealis; se alimenta demanda desde este nodo
SAL	Ozatlán	115	27401	OZAT-115	Recibe generación de la planta Capella Solar; se alimenta demanda desde este nodo
SAL	Sonsonate	115	27411	SONS-115	Recibe generación de la planta del Ingenio CASSA, y tiene demanda asociada
SAL	San Martin	115	27431	SMAR-115	Recibe generación de la planta Textufil 2 de forma radial desde la subestación San Bartolo
SAL	Ateos	115	27441	ATEO-115	Recibe generación de GECSA y tiene demanda asociada
SAL	Santo Tomás	115	27461	STOM-115	Recibe generación de la Planta fotovoltaica Antares de forma radial desde la subestación El Pedregal, y tiene demanda asociada
SAL	Talnique	115	27481	TALN-115	Recibe generación de la planta Talnique y tiene demanda asociada

Tabla 6. Nodos de control del sistema eléctrico de Honduras

		Nod	0		
País	Nombre	Voltaje (kV)	No. Bus (PSS/E)	Nombre (PSS/E)	Observaciones
HON	Cañaveral	138	3029	CRL B501	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Cañaveral, El Níspero, Las Nieves, Ampac, Rio Blanco, Zacapa, Cececapa, Peña Blanca y Geotérmica Geoplatanares.
HON	El Cajón	230	3032	CJN B601	Recibe generación de forma radial de la planta El Cajón.
HON	Pavana	230	3034	PAV B620	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Lufussa Valle y Lufussa San Lorenzo.

HON	El Progreso	138	3038	PGR B509	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Las Glorias, Laeisz San Isidro, Planta Ojo de agua, Ecopalsa, Lean, Mangungo, Aceydesa, San Juan Pueblo, Cuyamapa, Yodeco y CAHSA.
HON	Choloma	138	3049	CHM B539	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de la planta EMCE Choloma y planta CCG.
HON	Comayagua	138	3060	CYG B536	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: La Aurora, La Esperanza, El Coyolar e Hidroeléctrica de Comayagua
HON	La Puerta	138	3078	LPT B503	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de la planta La Puerta.
HON	Masca	138	3082	MAS B544	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Los Laureles, San Carlos, Cortesito y Cuyamel.
HON	Rio Lindo	138	3098	RLN B521	Recibe generación de forma radial de la planta Rio Lindo.
HON	Santa Fe	138	3101	SFE B505	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de la planta Patuca III y Planta Santa Fe
HON	Térmica Sulzer	138	3122	TSZ B526	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Térmica Sulzer y Elcosa.
HON	Villanueva	138	3123	VNU B520	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de la planta IHSA.
HON	Caracol	138	3180	CAR B540	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Hidro Yojoa y Caracol Knits Plant.
HON	San Pedro Sula Sur	138	3203	SPS B558	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Chumbagua, Envasa, Green Valley y Envasa Formosa.
HON	Agua Prieta	138	3204	AGP B556	Recibe generación de forma radial de la planta Enersa.
HON	Весо	138	3213	BCO 138	Nodo que tiene asociado generación. Recibe generación de forma radial de la planta Beco.
HON	Merendón	138	3219	MER 138	Recibe generación de forma radial de las plantas: Merendón Power Plant y GPP.
HON	Cerro de Hula	230	3544	CDH B629	Recibe generación de forma radial de la planta CDH (Energía Eólica de Honduras EEHSA).

HON	La Vegona	230	3550	VEG B607	Recibe generación de forma radial de la planta La Vegona.			
HON	Santa Lucia	230	3553	SLU B637	Recibe generación de forma radial de la planta Eólica San Marcos (El Bijagual) y Solar Santa Lucia.			
HON	Agua Fría	230	3592	AGF B641	Recibe generación de forma radial de las plantas: Solar Nacaome 1 y 2.			

Tabla 7. Nodos de control del sistema eléctrico de Nicaragua

		No	odo		
País	Nombre	Voltaje	No. Bus	Nombre	Observaciones
	. Tombre	(kV)	(PSS/E)	(PSS/E)	
NIC	Acahualinca	138	4300	ACH-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Hugo Chávez I, las Brisas y Planta Che Guevara 6.
NIC	Catarina	138	4307	CAT-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Ingenio Montelimar y GESARSA.
NIC	Los Brasiles	138	4315	LBS-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de la planta: Hugo Chávez II.
NIC	León I	138	4316	LNI-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de la planta Che Guevara 8, Ingenio San Antonio.
NIC	Managua	138	4317	MGA-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Che Guevara 3 y Managua.
NIC	Masaya	138	4319	MSY-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Che Guevara 2, Che Guevara 4, Che Guevara 5.
NIC	Planta Momotombo	138	4328	PMT-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de la planta: Momotombo U1, U2 y U3.
NIC	Planta Carlos Fonseca	138	4329	PCF-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de la planta hidroeléctrica: Carlos Fonseca.
NIC	Rivas	138	4330	RIV-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de la planta EGERSA.

NIC	Sébaco	138	4331	SEB-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas hidroeléctricas: Larreynaga, Centroamérica, Pantasma y El Diamante.	
NIC	Tipitapa	138	4336	TPT-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Che Guevara 1 y Tipitapa Power.	
NIC	Pensa	138	4341	PEN-138	Recibe generación de forma radial de la planta PENSA.	
NIC	Nagarote 2	138	4342	NG2-138	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de la planta Che Guevara 7.	
NIC	Mateare 1	230	4419	MT1-230	Recibe generación de forma radial de la Planta PMN GM1 y GM2.	
NIC	Eolo	230	4803	EOLO-230	Recibe generación de forma radial de Planta Eolo.	
NIC	Alba Rivas	230	4832	ABR-230	Recibe generación de forma radial de Planta Alba Rivas.	
NIC	San Martín	230	4410	SMT-230	Recibe generación de forma radial de Planta Blue Power	
NIC	Planta Nicaragua	230	4405	PNI-230	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Nicaragua y CENSA.	
NIC	Planta Che Guevara 9	230	4415	PCG9-230	Nodo que tiene asociado generación y retiro. Recibe generación de forma radial de las plantas: Che Guevara 9 y Solaris.	

Tabla 8. Nodos de control del sistema eléctrico de Costa Rica.

		NO	DO			
País	Nombre	Voltaje No. Bus (kV) (PSS/E)		Nombre (PSS/E)	OBSERVACIONES	
Costa Rica	Corobicí	230	50100	COR230A	Nodo que tiene asociados generación y demanda. Recibe generación de las plantas Dengo U1,U2 Y U3 y Sandillal U12	
Costa Rica	Arenal	230	50200	ARE230A	Nodo que tiene asociados generación y demanda. Arenal U1,U2 y U3	
	Miravalle	230	50250	MIR230A		

Costa Rica					Nodo que tiene asociados generación y demanda. Recibe generación de las plantas Miravalle U1,U5 y U12
Costa Rica	Barranca	230	50350	PBL230	Nodo que tiene asociados generación y demanda. Recibe generación de la planta Barranca U1,U2
Costa Rica	Toro	230	50700	TOR230	Nodo que tiene asociados generación y demanda. Toro: U3,U4 Y U12, El Ángel: U1,2, Don Pedro U1, AELA: U1,2, VOL U1
Costa Rica	Venecia	230	50750	VEN230	Nodo que tiene asociados generación y demanda. TOR3 U1,U2
Costa Rica	Peña Blancas	230	50800	PBL230	Nodo que tiene asociados generación y demanda. Peña Blancas U12
Costa Rica	Garabito	230	50900	GAB230	Nodo que tiene asociados generación y demanda. Garabito U:123,456,789 y 1011
Costa Rica	Cariblanco	230	50950	CAR230A	Nodo que tiene asociados generación y demanda. Cariblanco U:1 y 2
Costa Rica	Pailas	230	51150	PAI230	Nodo que tiene asociados generación y demanda. Pailas U1,2
Costa Rica	Garita	230	53200	GAR230	Nodo que tiene asociados generación y demanda. Recibe generación de la planta Chucas U1,U2
Costa Rica	Garita	138	53204	GAR138A	Nodo que tiene asociados generación y demanda. Garita U1,2, Ventanas Garita U3,4 y Tacares U1,2
Costa Rica	Rio Macho	138	53854	RMA138A	Nodo que tiene asociados generación y demanda. Rio Macho U1,2,3,4 y U5
Costa Rica	Pirrís	230	54250	PIR230	Nodo que tiene asociados generación y demanda. Pirrís U1,U2
Costa Rica	Cachi	138	58004	CAC138A	Nodo que tiene asociados generación y demanda. Recibe generación de las plantas Cachi U1 y la Joya U1,U2,U3,U4
Costa Rica	Angostura	138	58104	ANG138A	Nodo que tiene asociados generación y demanda. Recibe generación de las plantas Angostura U1,U2,U3
Costa Rica	Reventazón	230	58500	REV230	Nodo que tiene asociados generación y demanda. Recibe generación de las plantas REV U1,U2,U3,U4 Y U5

Costa Rica	Moín	230	58300	MOI230A	Nodo que tiene asociados generación y demanda. Recibe generación de las plantas Moín U5,U6,U7,U8, U9,U10, Y U14	
Costa Rica	Turrialva	138	58054	TUR138	Nodo que tiene asociados generación y demanda. Recibe generación de las plantas las Lajas	
Costa Rica	Leesville	230	58200	LEE230	Nodo que tiene asociados generación DJL U1,U2	
Costa Rica	General	230	54500	GEN230	Nodo que tiene asociados generación DJL U1,U2	
Costa Rica	Tejona	230	50150	TEJ230	Nodo que tiene asociados generación y retiro	
Costa Rica	Mogote	230	50300	MOG230	Nodo que tiene asociados generación y demanda. Recibe generación de la planta Negros 2 U1,2	
Costa Rica	Torito	138	58450	TTO230	Nodo que tiene asociados generación y demanda. Recibe generación de las plantas Torito U1,U2	
Costa Rica	Balsa Inferior	230	51300	BIN230	Nodo que tiene asociados generación recibe generación de la planta Balsa Inferior.	
Costa Rica	Ciudad Quezada	230	50650	CQU230	Nodo que tiene asociados generación y demanda. Recibe generación de la planta Platanar U1,2	
Costa Rica	Lindora	230	53050	LIN230	Nodo que tiene asociados generación y demanda.	
Costa Rica	La Caja	230	53000	CAJ230A	Nodo que tiene asociados generación y demanda.	
Costa Rica	El Coco	138	53304	COC138	Nodo que tiene asociados generación y demanda.	
Costa Rica	Escazú	138	53354	ESC138A	Nodo que tiene asociados generación y demanda.	
Costa Rica	Cóncavas	138	53754	COV138	Nodo que tiene asociados generación y demanda.	

Tabla 9. Nodos de control del sistema eléctrico de Panamá

		No	odo		
País	Nombre	Voltaje (kV)	No. Bus (PSS/E)	Nombre (PSS/E)	Observaciones
PAN	Panamá	115	6002	PAN115	Nodo que tiene asociados generación y demanda. Recibe generación de planta: Cerro Patacón U1 y U2.
PAN	Las Minas 1	115	6059	LM1115	Recibe radialmente generación de las planta Bahía Las Minas U9, U8, U5 y U6, Estrella de Mar, Barcaza Esperanza y carga asociada a la subestación France Field.
PAN	Las Minas 2	115	6060	LM2115	Recibe radialmente generación de planta Bahía Las Minas U2, U3, U4.
PAN	Miraflores	115	6123	MIR115A	Recibe radialmente generación de planta Miraflores (Generación de la Red de la Autoridad del Canal ACP).
PAN	Santa Rita	115	6173	STR115	Recibe radialmente generación de la planta JINRO.
PAN	Cativa	115	6270	CAT115	Recibe radialmente generación de la planta Cativa.
PAN	Cativa II	115	6290	CATII115	Recibe radialmente generación de la planta Termo Colón.
PAN	Panamá II	230	6003	PANII230	Nodo que tiene asociados generación y demanda. Recibe generación de planta: Costa Norte, Bayano, Pacora, CAZ y carga en 24 de diciembre.
PAN	Chorrera	230	6005	CHO230	Nodo que tiene asociados generación y demanda. A este nodo se conecta radialmente la planta Pan-am.
PAN	Llano Sanchez	230	6008	LSA230	Nodo que tiene asociados generación y demanda. Recibe generación de plantas como: Llano Sánchez, Yeguada y generación distribuida en subestaciones El Fraile, Arena y Punta Rincón.
PAN	Mata de Nance	230	6011	MDN230	Nodo que tiene asociados centros de demanda y generación. Recibe generación de las plantas La Estrella, Los Valles, Paso Ancho, Bugaba, San Lorenzo, entre otras.
PAN	Fortuna	230	6096	FOR230	Recibe radialmente generación de la planta Fortuna.
PAN	Guasquitas	230	6179	GUA230	Recibe radialmente generación de las plantas Estí, Gualaca, Prudencia y Lorena.

PAN	El Higo	230	6240	EHIG230	Recibe radialmente generación de la Planta Farallón Solar.
PAN	Esperanza	230	6263	ESP230	Tiene asociados centros de demanda y generación. Recibe generación de la planta Changuinola 1.
PAN	Boquerón III	230	6380	BOQIII230	Recibe radialmente generación de las plantas Pedregalito I, Pedregalito II, Perlas Norte, Perlas Sur, RP-490, La Cuchilla y Macano.
PAN	El Coco	230	6460	ECO230	Recibe radialmente generación de las plantas Nuevo Chagres 1, Nuevo Chagres 2, Rosa de Los Vientos 1 y 2, Portobelo, Marañón y Solar Penonome.
PAN	San Bartolo	230	6520	SBA230	Recibe radialmente generación de las plantas La Cruces.
PAN	Bella Vista	230	6550	BEV230	Recibe radialmente generación de las plantas Barro Blanco.
PAN	Antón	230	6830	ANT230	Recibe radialmente generación de la planta Toabré.

Tercer Paso. RTR Preliminar

La RTR preliminar es el conjunto formado por los nodos y líneas de los pasos anteriores y las líneas y nodos intermedios que los unen mediante el camino eléctrico más corto (menor impedancia) en cada nivel de tensión. La RTR preliminar debe ser continua desde Panamá hasta Guatemala.

En este paso, para conectar los nodos de control a la red básica se escoge un nodo de control a la vez, en cada oportunidad el más cercano a la red básica. Al comienzo, los nodos de la interconexión son los límites de la red básica, pero a medida que se agregan conexiones de los nodos de control a ellos, la red básica se va internando en los sistemas eléctricos nacionales.

Para obtener el camino eléctrico más corto se realizaron corridas de flujo en DC, se colocó una carga en los nodos de la RTR básica y un generador en el nodo de control en evaluación, se escogió el escenario de menor pérdida y se siguió la ruta por la que se desplaza el mayor porcentaje de flujo de potencia. Los elementos de transmisión que se encontraron en esta ruta, son los que se consideran como parte de la RTR preliminar.

Luego se revisó que la RTR fuese continua, si no era el caso se procedió a unirla por el camino eléctrico más corto, de la siguiente forma:

a) Se colocó una carga en el nodo de control en análisis y un generador en otro nodo de control

- b) Luego se intercambió la carga y el generador entre los nodos de control en análisis
- c) De los escenarios anteriores, se seleccionó el escenario que presenta la menor pérdida de potencia
- d) Si existen más nodos de control a los cuales puede conectarse el nodo de control en análisis, se repitieron los pasos indicados en los literales del (a) al (c), para cada una de las posibles opciones
- e) Se seleccionaron los elementos de transmisión de la ruta que presentó las menores pérdidas de todas las identificadas hasta el literal (d) anterior.

Adicionalmente, en los casos donde existen elementos en paralelo, se consideró que el conjunto de tales elementos conforma la ruta de menor impedancia del tramo. A continuación, se listan los elementos de transmisión que se consideran parte de la RTR preliminar, para cada sistema eléctrico nacional de la región.

Tabla 10. Nodos que se adicionan como parte de la RTR preliminar en el sistema eléctrico de Guatemala

		Node	0						
País	Nombre	Voltaje (kV)			Observaciones				
GUA	Guatemala Este	230	1107	GES-231	Nodo necesario para conectar el nodo de control San Antonio el Sitio 230. kV (1170) al nodo de la RTR básica Guatemala Norte 230 kV (1108).				
GUA	Moyuta	230	1126	MOY-231	Nodo que se adiciona para hacer la RTR continua.				
GUA	Moyuta	230	1129	MOY-232	Nodo que se adiciona para hacer la RTR continua.				
GUA	Siquinala	230	1132	SIQ-230	Nodo necesario para conectar el nodo de control Palo Gordo 230 KV (1145) al nodo de la RTR básica Guatemala Norte 230 kV (1108).				
GUA	Madre Tierra	230	1169	MTI-230	Nodo necesario para conectar el nodo de control Ingenio la Unión 230 KV (1165) al nodo de la RTR básica Aguacapa 230 kV (1101).				

Tabla 11. Líneas de transmisión que forman parte de la RTR preliminar en el sistema eléctrico de Guatemala.

	Línea de Transmisión											
	Nodo desde			Nodo hacia								
País	Nombre		Nombre (PSS/E)	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	Id	Comentario			
GUA	Alborada	1102	ALB-230	Escuintla	1106	ESC-231	230	1 2	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Alborada 230 kV (1102) al nodo de la RTR básica Aguacapa 230 kV (1101).			
GUA	Escuintla	1106	ESC-231	San Joaquín	1120	SJQ-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Escuintla			

									230 kV (1106) al nodo de la RTR básica Aguacapa 230 kV (1101).
GUA	San Joaquín	1120	SJQ-230	Pacifico	1140	PAC-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control San Joaquín 230 kV (1120) al nodo de la RTR básica Aguacapa 230 kV (1101).
GUA	Pacifico	1140	PAC-230	Aguacapa	1101	AGU-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Pacifico 230 kV (1140) al nodo de la RTR básica Aguacapa 230 kV (1101).
OT I	GUA Chixoy II 11			Tac Tic	1444	TIC-231		1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Chixoy
GUA		1141	CHX-233	Tac Tic	1448	TIC-232	230	2	230 kV (1141) al nodo de la RTR básica Guatemala Norte (1108)
GUA	Tac Tic	1444	TIC-231	Guatemala	1108	GNO- 231	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Tac Tic
GUA	Tac Tic	1448	TIC-232	Norte				2	230 kV (1444 y 1448) al nodo de la RTR básica Guatemala Norte 230KV (1108).
GUA	Palo Gordo	1145	PGO-231	Siquinalá	1132	SIQ-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Palo Gordo 230 kV (1145) al nodo de la RTR básica Guatemala Norte 230 kV (1108).
GUA	Siquinalá	1132	SIQ-230	Escuintla	1106	ESC-231	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Palo Gordo 230 kV (1145) al nodo de la RTR básica Guatemala Norte 230 kV (1108).
GUA	Escuintla	1106	ESC-231	Guatemala Sur	1109	GSU-231	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Palo Gordo 230 kV (1145) al nodo de la RTR básica Guatemala Norte 230 kV (1108).
GUA		1109	GSU-231		1107	GES-231	230	1	

	Guatemala Sur			Guatemala Este				2	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Palo Gordo 230 kV (1145) al nodo de la RTR básica Guatemala Norte 230 kV (1108).
GUA	Guatemala	1107	GES-231	Guatemala	1108	GNO- 231	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Palo
Este	1107	GES EST	Norte	1136	GNO- 232	230	2	Gordo 230 kV (1145) al nodo de la RTR básica Guatemala Norte 230 kV (1108).	
GUA	Ingenio la Unión	1165	LUN-230	Madre Tierra	1169	MTI-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Ingenio la Unión 230 kV (1165) al nodo de la RTR básica Aguacapa 230 kV (1101).
GUA	Panzos	1133	PNZ-230	Tac Tic	1144	TIC-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Ingenio la Unión 230 kV (1165) al nodo de la RTR básica GNO 230 kV (1108).
GUA	Pantaleón	1168	PNT-230	Siquinalá	1132	SIQ-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Ingenio Pantaleón 230 kV (1168) al nodo de la RTR básica Aguacapa 230 kV (1101).
GUA	Ingenio Santa Ana	1166	SAA-230	Pacifico	1140	PAC-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Ingenio Santa Ana 230 kV (1166) al nodo de la RTR básica Aguacapa 230 kV (1101).
GUA	San Antonio el Sitio	1170	SNT-231	La Vega II	1124	LVG-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control San Antonio el Sitio 230 kV (1170) al nodo de la RTR básica La Vega II 230 kV (1124).
GUA	Ingenio Magdalena	1219	MAG- 230	Pacifico	1140	PAC-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Ingenio Magdalena 230 kV (1219) al nodo de la RTR básica Aguacapa 230 kV (1101).

GUA	Covadonga	1840	COV-230	Uspatan	1845	USP-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Covadonga 230 kV (1840) al nodo de la RTR básica Guatemala Norte 230 kV (1108).
OT I		10.15				GUN 000	222	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control
GUA	Uspatan	1845	USP-230	Chixoy II	1141	CHX-233	230	2	Uspatan 230 kV (1845) al nodo de la RTR básica Guatemala Norte 230 kV (1108).
GUA	Moyuta	1125	MOY- 231	Moyuta	1126	MOY- 230	230	1	Enlace de barra para hacer la RTR continua
GUA	Moyuta	1126	MOY- 230	Moyuta	1129	MOY- 232	230	1	Enlace de barra para hacer la RTR continua
GUA	Moyuta	1129	MOY- 232	La Vega II	1124	LVG-230	230	1	Tramo de la ruta eléctrica más corta para hacer la RTR continua
GUA	Pantaleón	1168	PNT-230	Madre Tierra	1169	MTI-230	230	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Ingenio La Unión 230 kV (1165) al nodo de la RTR básica Aguacapa 230 kV (1101).

Tabla 12. Nodos que se adicionan como parte de la RTR preliminar en el sistema eléctrico de El Salvador.

		Node			
País	Nombre	Voltaje (kV)	No. Bus Nombre (PSS/E)		Observaciones
ESA	San Rafael	115	27321	SRAF-115	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Chinchontepec 115 kV (27281) al nodo de la RTR básica Nejapa 230 kV (28371), por medio del nodo de control San Martín 115 kV (27431).
ESA	San Antonio Abad	115	27361	SANT-115	Nodo que forma parte de la ruta de menor impedancia que conecta los nodos de control Ateos 115 kV (27441) y Talnique 115 kV (27481) al nodo de la RTR básica Nejapa 230 kV (28371).

ESA	San Matías	115	27501	$\sim N/I \wedge I - I \cdot I \sim$	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Opico 115 kV (27381) al nodo de la RTR básica Nejapa 230 kV (28371).
-----	------------	-----	-------	--------------------------------------	---

Tabla 13. Líneas de transmisión que forman parte de la RTR preliminar en el sistema eléctrico de El Salvador.

					L	ínea de Tr	ansmisió	n	
- /	Nod	o desde		Nodo hacia					
País	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	ld	Comentario
			ACAJ-	_	27411	SONS-		1	Tramos que forman parte de la ruta de menor impedancia que conecta el nodo de control Acajutla
ESA	Acajutla	27131	115	Sonsonate		115	115	2	115 kV (27131) y Acajutla2 115 kV (27132) al nodo de la RTR básica Ahuachapán 230 kV (28161).
ESA	Sonsonate	27411	SONS- 115	Ahuachapán	27161	AHUA- 115	115	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Sonsonate 115 kV (27411) al nodo de la RTR básica Ahuachapán 230 kV (28161).
ESA	Santa Ana	27351	SANA- 115	Ahuachapán	27161	AHUA- 115	115	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Santa Ana 115 kV (27351) al nodo de la RTR básica Ahuachapán 230 kV (28161).
ESA	Opico	27381	OPIC- 115	San Matías	27501	SMAT- 115	115	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Opico 115 kV (27381) al nodo de la RTR básica Nejapa 230 kV (28371).
ESA	San Matías	27501	SMAT- 115	Nejapa	27371	NEJA- 115	115	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Opico 115 kV (27381) al nodo de la RTR básica Nejapa 230 kV (28371).

ESA	Ateos	27441	ATEO- 115	Talnique	27481	TALN- 115	115	1	Tramos que forman parte de la ruta de menor impedancia que conecta el nodo de control Ateos 115 kV (27441) al nodo de la RTR básica Nejapa 230 kV (28371).
ESA	Talnique	27481	TALN- 115	San Antonio Abad	27361	SANT- 115	115	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Talnique 115 kV (27481) al nodo de la RTR básica Nejapa 230 kV (28371).
ESA	San Antonio Abad	27361	SANT- 115	Nejapa	27371	NEJA- 115	115	1	Tramos que forman parte de la ruta de menor impedancia que conecta el nodo de control Talnique 115 kV (27481) al nodo de la RTR básica Nejapa 230 kV (28371).
ESA	5 de Noviembre	27101	5NOV- 115	Cerrón Grande	27171	CGRA- 115	115	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control 5 de Noviembre 115 kV (27101) al nodo de la RTR básica Nejapa 230 kV (28371).
ESA	Cerrón Grande	27171	CGRA- 115	Nejapa	27371	NEJA- 115	115	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Cerrón Grande 115 kV (27171) al nodo de la RTR básica Nejapa 230 kV (28371).
ESA	Soyapango	27301	SOYA- 115	Nejapa	27371	NEJA- 115	115	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Soyapango 115 kV (27301) al nodo de la RTR básica Nejapa 230 kV (28371).
ESA	Chinchontepec	27281	CHIN- 115	San Rafael	27321	SRAF- 115	115	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Chinchontepec 115 kV (27281) al nodo de la RTR básica Nejapa 230 kV (28371).
ESA	San Rafael	27321	SRAF- 115	San Martín	27431	SMAR- 115	115	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Chinchontepec 115 kV (27281) al nodo de la RTR básica Nejapa 230 kV (28371).

ESA	San Martín	27431	SMAR- 115	Santo Tomás	27461	STOM- 115	115	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Santo Tomás 115 kV (27461) al nodo de la RTR básica Nejapa 230 kV (28371).
ESA	San Martín	27431	SMAR- 115	Nejapa	27371	NEJA- 115	115	1	Tramo de la ruta eléctrica más corta para unir el nodo de control San Martín 115 kV (27431) al nodo de la RTR básica Nejapa 230 kV (28371).
ESA	Berlín	27211	BERL- 115	15 de Septiembre	27181	15SE- 115	115	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Berlín 115 kV (27211) al nodo de la RTR básica 15 de Septiembre 230 kV (28181).
ESA	Ozatlán	27401	OZAT- 115	San Miguel	27341	SMIG- 115	115	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control Ozatlán115 kV (27401) al nodo de la RTR básica 15 de Septiembre 230 kV (28181).
ESA	San Miguel	27341	SMIG- 115	15 de Septiembre	27181	15SE- 115	115	1	Tramo que forma parte de la ruta de menor impedancia que conecta el nodo de control San Miguel 115 kV (27341) al nodo de la RTR básica 15 de Septiembre 230 kV (28181).

Tabla 14. Transformadores de tres devanados que forman parte de la RTR preliminar en el sistema eléctrico de El Salvador.

		Nodo	desde	Nodo hacia (1)		Nodo	hacia (2)			
País	Subestación	No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	Id	Comentario
			AHUA-		AHUA-				INTER 1	Conectan el Nodo de Control Ahuachapán 115 kV (27161) al
ESA	Ahuachapán	28161	230	27161	115	24161	AHUA-46	230/115/46	INTER 2	nodo de la RTR básica Ahuachapán 230 kV (28161)
	45 1								INTER 3	Conectan el Nodo de Control 15
ESA	15 de Septiembre	28181	15SE-230	27181	15SE-115	24181	15SE-46	230/115/46	INTER 4	de Septiembre 115 kV (27181) al Nodo de la RTR básica 15 de Septiembre 230 kV (28181)
					NITIA		NITIA		NEJA_TR_1	Conectan el Nodo de Control
ESA	Nejapa	28371	NEJA-230	27371	NEJA- 115	22372	NEJA- 23AT	230/115/23	NEJA_TR_2	Nejapa 115 kV (27371) al nodo de la RTR básica Nejapa 230 kV (28371).

Tabla 15. Nodos que se adicionan como parte de la RTR preliminar en el sistema eléctrico de Honduras

		Nodo			
País	Nombre	Voltaje (kV)	No. Bus (PSS/E)	Nombre (PSS/E)	Observaciones
HON	Progreso	230	3095	PGR B603	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Progreso 138 kV (3038) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Віјао	138	3040	BIJ B562	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control BECO 138 kV (3213) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Bermejo	138	3037	BER B507	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Merendón 138 kV (3219) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Circunvalación	138	3052	CIR B537	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Merendón 138 kV (3219) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	El Retorno	138	3160	RET 138KV	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Merendón 138 kV (3219) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Santa Marta	138	3108	SMT B534	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control San Pedro Sula Sur 138 kV (3203) al nodo de la RTR básica T43 Cajón 230 kV (30001).

HON	Amarateca	230	3429	AMT B605	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Santa Fe 138 kV (3101) al nodo de la RTR básica Agua Caliente 230 kV (3301).
HON	Amarateca	138	3427	AMT B541	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Santa Fe 138 kV (3101) al nodo de la RTR básica Agua Caliente 230 kV (3301).
HON	Toncontín	230	3155	TON B610	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Comayagua 138 kV (3060) al nodo de la RTR básica Agua Caliente 230 kV (3301).
HON	Toncontín	138	3120	TON B535	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Comayagua 138 kV (3060) al nodo de la RTR básica Agua Caliente 230 kV (3301).
HON	Suyapa	230	3033	SUY B612	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Cerro de Hula kV (3544) al nodo de la RTR básica Agua Caliente 230 kV (3301)

Tabla 16. Líneas de transmisión que forman parte de la RTR preliminar en el sistema eléctrico de Honduras.

			Línea de Transmisión											
D:	aís	No	odo desde	•	Nodo hacia									
F		Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	ld	Comentario				
Н	ON	Cañaveral	3029	CRL B501	Rio Lindo	3098	RLN B521	138	1	Tramo de la ruta de menor impedancia que conecta el nodo de control de Cañaveral 138 kV (3029) al nodo de la RTR básica T43 Cajón 230 kV (30001).				

HON	Río Lindo	3098	RLN B521	Progreso	3038	PGR B509	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Río Lindo 138 kV (3098) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Merendón	3219	MER 138	Bermejo	3037	BER B507	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Merendón 138 kV (3219) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Bermejo	3037	BER B507	Circunvalación	3052	CIR B537	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Merendón 138 kV (3219) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Circunvalación	3052	CIR B537	El Retorno	3160	RET 138KV	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Merendón 138 kV (3219) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	El Retorno	3160	RET 138KV	Progreso	3038	PGR B509	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Merendón 138 kV (3219) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Весо	3213	BCO 138	Bijao	3040	BIJ B562	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control BECO 138 kV (3213) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Bijao	3040	BIJ B562	Térmica Sultzer	3122	TSZ B526	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control BECO 138 kV (3213) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Térmica Sultzer	3122	TSZ B526	Masca	3082	MAS B544	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Térmica Sultzer 138 kV (3122) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Masca	3082	MAS B544	Choloma	3049	CHM B539	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Masca 138 kV (3082) al nodo de la RTR básica T43 Cajón 230 kV (30001).

HON	Choloma	3049	CHM B539	Agua Prieta	3204	AGP B556	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control de Choloma 138 kV (3049) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Agua Prieta	3204	AGP B556	San Pedro Sula Sur	3203	SPS B558	138	1 2	Tramo de la ruta eléctrica más corta para unir el nodo de control Agua Prieta 138 kV (3204) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	La Puerta	3078	LPT B503	San Pedro Sula Sur	3203	SPS B558	138	1 2	Tramo de la ruta eléctrica más corta para unir el nodo de control La Puerta 138 kV (3078) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Caracol	3180	CAR B540	Villanueva	3123	VNU B520	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Caracol 138 kV (3180) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Villanueva	3123	VNU B520	San Pedro Sula Sur	3203	SPS B558	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Villanueva 138 kV (3123) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	San Pedro Sula Sur	3203	SPS B558	Santa Marta	3108	SMT B534	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control San Pedro Sula 138 kV (3203) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Santa Marta	3108	SMT B534	Progreso	3038	PGR B509	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control San Pedro Sula 138 kV (3203) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Progreso	3095	PGR B603	El Cajón	3032	CJN B601	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Progreso 138 kV (3038) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	La Vegona	3550	VEG B607	Cajón	3032	CJN B601	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control de La Vegona 230 kV (3550) al nodo de la RTR básica T43 Cajón 230 kV (30001)

HON	Cajón	3032	CJN B601	T43 Cajón	30001	T43 CJN	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control El Cajón 230 kV (3032) al nodo de la RTR básica T43 Cajón 230 kV (30001).
HON	Comayagua	3060	CYG B536	Amarateca	3427	AMT B541	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Comayagua 138 kV (3060) al nodo de la RTR básica Agua Caliente 230 kV (3301).
HON	Amarateca	3429	AMT B605	Toncontín	3155	TON B610	230	1 2	Tramo de la ruta eléctrica más corta para unir el nodo de control Comayagua 138 kV (3060) al nodo de la RTR básica Agua Caliente 230 kV (3301).
HON	Santa Fe	3101	SFE B505	Toncontín	3120	TON B535	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Santa Fe 138 kV (3101) al nodo de la RTR básica Agua Caliente 230 kV (3301).
HON	Toncontín	3155	TON B610	Agua Caliente	3301	AGC B624	230	1 2	Tramo de la ruta eléctrica más corta para unir el nodo de control Santa Fe 138 kV (3101) al nodo de la RTR básica Agua Caliente 230 kV (3301).
HON	Cerro de Hula	3544	CDH B629	Suyapa	3033	SUY B612	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control de Cerro de Hula 230 kV (3544) al nodo de la RTR básica Agua Caliente 230 kV (3301)
HON	Suyapa	3303	SUY B612	Amarateca	3429	AMT B605	230	1 2	Tramo de la ruta eléctrica más corta para unir el nodo de control de Cerro de Hula 230 kV (3544) al nodo de la RTR básica Agua Caliente 230 kV (3301)
HON	Pavana	3034	PAV B620	Agua Caliente	3301	AGC B624	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Pavana 230 kV (3034) al nodo de la RTR básica Agua Caliente 230 kV (3301).
HON	Santa Lucia	3553	SLU B637	Prados	3310	PRD B618	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Santa Lucia 230 kV (3553) al nodo de la RTR básica Prados 230 kV (3310).

HON	Agua Fría	3592	AGF B641	Nueva Nacaome	3211	NNC B639	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Agua Fría 230 kV (3592) al nodo de la RTR básica Nueva Nacaome 230 kV (3211).
HON	Agua Fría	3592	AGF B641	Agua Caliente	3301	AGC B624	230	1	Tramo de la ruta eléctrica más corta para hacer la RTR continua.
HON	Santa Lucia	3553	SLU B637	Pavana	3034	PAV B620	230	1	Tramo de la ruta eléctrica más corta para hacer la RTR continua.
HON	Amarateca	3429	AMT B605	T43 Amarateca	30002	T43 AMT	230	1	Tramo de la ruta eléctrica más corta para hacer la RTR continua.

Tabla 17. Transformadores de tres devanados que forman parte de la RTR preliminar en el sistema eléctrico de Honduras.

	Transformador de tres devanados												
		Nodo	desde	Nodo hacia (1)		Nodo	hacia (2)						
País	Subestación	No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	ld	Comentario			
				3095	PGR B603	3979	TER PGR T603	230/138/13.8	PGR T603	Transformadores que forman parte de la ruta eléctrica más corta que une el nodo de control Progreso 138 kV (3038) al nodo de la RTR básica T43 Cajón 230 kV (30001).			
HON	Progreso	3038	3038 PGR B509			3978	TER PGR T604	230/138/13.8	PGR T604				
						3957	TER PGR T6XX	230/138/13.8	PGR T6XX				
HON	Amarateca	3429	AMT B605	3427	AMT B541	3428	AMT B314	230/138/34.5	AMT T605	Transformador que forman parte de la ruta eléctrica más corta que une el nodo de control Comayagua			

									138 kV (3060) al nodo de la RTR básica Agua Caliente 230 kV (3301).
HON	Toncontín	3155	TON B610	3120	TON B535	3961	TER TON T610	230/138/13.8	Transformador que forman parte de la ruta eléctrica más corta que une el nodo de control Santa Fe 138 kV (3120) al nodo de la RTR básica Agua Caliente 230 kV (3301).

Tabla 18. Nodos que se adicionan como parte de la RTR preliminar en el sistema eléctrico de Nicaragua

		No	do								
País	Nombre	Voltaje (kV)	No. Bus (PSS/E)	Nombre (PSS/E)	Observaciones						
NIC	La Virgen	138	4827	LVG-138	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Rivas 138 kV (4330) al nodo de la RTR básica La Virgen 230 kV (4800).						
NIC	San Benito	138	4357	SNB-138	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Sébaco 138 kV (4331) al nodo de la RTR básica Ticuantepe 230 kV (4406).						
NIC	Mateare 1	138	4392	MT1-138	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Momotombo 138 kV (4328) al nodo de la RTR básica Ticuantepe 230 kV (4406).						
NIC	Los Brasiles	230	4401	LBS-230	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Los Brasiles 138 kV (4315) al nodo de la RTR básica Ticuantepe 230 kV (4406).						

Tabla 19. Líneas de transmisión que forman parte de la RTR preliminar en el sistema eléctrico de Nicaragua.

	Línea de Transmisión											
País	N	odo desde		ı	lodo hacia		W-16-1-					
rais	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	Id	Comentario			
NIC	Sandino	4402	SND-230	Planta Nicaragua	4405	PNI-230	230	1 2	Tramo de la ruta eléctrica más corta para unir el nodo de control Planta Nicaragua 230 kV (4405) al nodo de la RTR básica Sandino 230 kV (4402).			
NIC	Planta Che Guevara 9	4415	PCG9-230	Sandino	4402	SND-230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Planta Che Guevara 9 230 kV (4415) al nodo de la RTR básica Sandino 230 kV (4402).			
NIC	La Virgen	4800	LVG-230	San Martín	4410	SMT-230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control San Martín 230 kV (4410) al nodo de la RTR básica La Virgen 230 kV (4800).			
NIC	Mateare 1	4419	MT1-230	Los Brasiles	4401	LBS-230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Mateare 230 kV (4419) al nodo de la RTR básica Ticuantepe 230 kV (4406).			
NIC	Ticuantepe	4406	TCP-230	Masaya	4404	MSY-230	230	1	Tramo de la ruta eléctrica más corta para unir nodos de la RTR básica Ticuantepe 230 kV (4406) al nodo de Masaya 230 kV (4404).			
NIC	Eolo	4803	EOL-230	Amayo	4750	AMY-230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Eolo (4803) al nodo de la RTR básica Amayo 230 KV (4750).			
NIC	Amayo	4750	AMY-230	Alba Rivas	4832	ABR-230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Alba Rivas (4832) al nodo de la RTR básica Amayo 230 KV (4750).			
NIC	Ticuantepe	4406	TCP-230	Los Brasiles	4401	LBS-230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Los Brasiles 230 kV (4401) al nodo de la RTR básica Ticuantepe 230 kV (4406).			

NIC	Alba Rivas	4832	ABR-230	La Virgen	4800	LVG-230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Alba Rivas (4832) al nodo de la RTR básica La Virgen (4800) 230 KV.
NIC	Sandino	4402	SND-230	León I	4403	LNI-230	230	1	Tramo de la ruta eléctrica más corta para unir nodos de la RTR básica León 230 kV (4403) al nodo de Sandino 230 kV (4402).
NIC	Pensa	4341	PEN-138	León I	4316	LNI-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Pensa 138 kV (4341) al nodo de la RTR básica León I 230 kV (4403).
NIC	Planta Momotombo	4328	PMT-138	Nagarote 2	4342	NG2-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Planta Momotombo 138 kV (4328) al nodo de la RTR básica Ticuantepe 230kV (4406).
NIC	Nagarote 2	4342	NG2-138	Mateare 1	4392	MT1-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Planta Nagarote 138 kV (4342) al nodo de la RTR básica Ticuantepe 230kV (4406).
NIC	Mateare 1	4392	MT1-138	Los Brasiles	4315	LBS-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control de Mateare 138 kV (4392) al nodo de la RTR básica Ticuantepe 230kV (4406).
NIC	Los Brasiles	4315	LBS-138	Acahualinca	4300	ACH-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Acahualinca 138 kV (4300) al nodo de la RTR básica Ticuantepe 230 kV (4406).
NIC	Managua	4317	MGA-138	Acahualinca	4300	ACH-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Managua 138 kV (4317) al nodo de la RTR básica Ticuantepe 230 kV (4406).
NIC	Managua	4317	MGA-138	San Benito	4357	SNB-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control de San Benito 138 kV (4357) al nodo de la RTR básica Ticuantepe 230 kV (4406).
NIC	Sébaco	4331	SEB-138	Planta Carlos Fonseca	4329	PCF-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Sébaco 138 kV (4331) al nodo de la RTR básica Ticuantepe 230 kV (4406).

NIC	Rivas	4330	RIV-138	La Virgen	4827	LVG-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Rivas 138 kV (4330) al nodo de la RTR básica La Virgen 230 kV (4800).
NIC	San Benito	4357	SNB-138	Planta Carlos Fonseca	4329	PCF-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Planta Planta Carlos Fonseca 138 kV (4329) al nodo de la RTR básica Ticuantepe 230 kV (4406).
NIC	Catarina	4307	CAT-138	Masaya	4319	MSY-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Catarina 138 kV (4307) al nodo de la RTR básica Masaya 230 kV (4404).
NIC	Tipitapa	4336	TPT-138	Masaya	4319	MSY-138	138	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Tipitapa 138 kV (4336) al nodo de la RTR básica Masaya 230 kV (4404).

Tabla 20. Transformadores de tres devanados que forman parte de la RTR preliminar en el sistema eléctrico de Nicaragua.

					T	ransforma	ador de tre	s devanados		
País		Nodo	desde	Nodo hacia (1)		Nodo h	acia (2)			
rais	Subestación	No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	ld	Comentario
						4122	LNI-AT1		T1	Transformadores que forman parte de la ruta eléctrica más corta que une el nodo de control
NIC	León I	León I 4403 LNI-230 4316 LNI-138 230/138/24.9 4124 LNI-AT2	T2	León I 138 kV (4316) al nodo de RTR básica León I 230 kV (4403).						
						4908	LBS-AT1		T1	Transformadores que forman parte de la ruta eléctrica más corta que une el nodo de control
NIC	Los Brasiles	4401	LBS-230	4315	LBS-138	4910	LBS-AT2	230/138/13.8	T2	de Los Brasiles 138 kV (4315) al nodo de RTR básica Ticuantepe 230 kV (4406).
NIC	Masaya	4404	MCV 220	4210	MCV 120	4916	MSY- AT1	220/120/12 0	T1	Transformadores que forman parte de la ruta eléctrica más corta que une el nodo de control
NIC	Masaya	4404 MSY	MSY-230	4319	MSY-138	4918	MSY- AT2	230/138/13.8	T2	Masaya 138 kV (4319) al nodo de RTR básica Masaya 230kV (4404).

						4927	MSY- AT3		Т3	
NIC	La Virgen	4800	LVG-230	4827	LVG-138	4173	LVG-AT1	230/138/24.9	T1	Transformador que forma parte de la ruta eléctrica más corta que une el nodo de control de Rivas 138 kV (4330) al nodo de RTR básica La Virgen 230 kV (4800).

Tabla 21. Nodos que se adicionan como parte de la RTR preliminar en el sistema eléctrico de Costa Rica.

País			Nodo		Observaciones
	Nombre	Voltaje (kV)	No. Bus (PSS/E)	Nombre (PSS/E)	
CRI	Tárbaca	230	53900	TAR230A	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Reventazón 230 kV (58500) con el nodo de la RTR básica Parrita 230 kV (54000).
CRI	San Miguel	230	53150	SMI230A	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Reventazón 230 kV (58500) con el nodo de la RTR básica Parrita 230 kV (54000).
CRI	Coronado	230	54200	CON230A	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Reventazón 230 kV (58500) con el nodo de la RTR básica Parrita 230 kV (54000).
CRI	Tejar	230	54050	TER230	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Reventazón 230 kV (58500) con el nodo de la RTR básica Parrita 230 kV (54000).
CRI	El Este	230	53550	EST230	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Reventazón 230 kV (58500) con el nodo de la RTR básica Parrita 230 kV (54000).
CRI	Rio Macho	230	53850	RMA230	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Rio Macho 138kV (53854) con el nodo de la RTR básica Cañas 230 kV (50050).

CRI	La Caja	230	53002	CAJ230B	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control La Caja 230kV (53000) con el nodo de la RTR básica Parrita 230 kV (54000).
CRI	La Caja	138	53004	CAJ138A	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Garita 138kV (53204) con el nodo de la RTR básica Cañas 230 kV (50050).
CRI	Trapiche	230	58150	TRA230	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control LEE 230kV (58200) con el nodo de la RTR básica Parrita 230 kV (54000).

Tabla 22. Líneas de transmisión que forman parte de la RTR preliminar en el sistema eléctrico de Costa Rica.

				Líneas	de Transmis	sión de la RTI	R Prelimin	ar	
País	N	odo desde	do desde		Nodo hacia				
	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV) Id		Comentario
CRI	Corobicí	50100	COR230A	Cañas	50050	CAS230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Corobicí 230 kV (50100) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Arenal	50200	ARE230A	Corobicí	50100	COR230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Arenal 230 kV (50200) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Tejona	50150	TEJ230	Arenal	50200	ARE230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Tejona 230 kV (50150) al nodo de la RTR básica Cañas 230 kV (50050)

CRI	Miravalles	50250	MIR230A	Arenal	50200	ARE230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Miravalle230 kV (50250) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Mogote	50300	MOG230	Pailas	51150	PAI230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Mogote 230 kV (50300) al nodo de la RTR básica Liberia 230 kV (50000)
CRI	Tárbaca	53900	TAR230A	Parrita	54000	PAR230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Reventazón 230 kV (58500) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Tárbaca	53900	TAR230A	Lindora	53050	LIN230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control La Caja 230 kV (53000) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	San Miguel	53150	SMI230A	Lindora	53050	LIN230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Reventazón 230 kV (58500) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	El Este	53550	EST230	Tejar	54050	TER230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Toro 230 kV (50700) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Pirrís	54250	PIR230	Parrita	54000	PAR230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control RMA 230 kV (53854) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Pirrís	54250	PIR230	Tejar	54050	TER230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control RMA 230 kV (53854) al nodo de la RTR básica Parrita 230 kV (54000)

CRI	Tejar	54050	TER230	Río Macho	53850	RMA230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Reventazón 230 kV (58500) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Torito	58450	TTO230	Río Macho	53850	RMA-230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Reventazón 230 kV (58500) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Trapiche	58150	TRA230	Reventazón	58500	REV230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control LEE 230 kV (58200) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Garabito	50900	GAB230	Cañas	50050	CAS230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Garabito 230 kV (50350) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Barranca	50350	BAR230	Garabito	50900	GAB230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Barranca 230 kV (50350) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Peñas Blancas	50800	PBL230	Tejona	50150	TEJ230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Peñas Blancas 230 kV (50800) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Toro	50700	TOR230	Cariblanco	50950	CAR230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Toro 230 kV (50700) al nodo de la RTR básica Parrita 230 kV (54000)

CRI	Cariblanco	50950	CAR230A	San Miguel	53150	SMI230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Venecia 230 kV (50750) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Venecia	50750	VEN230	Ciudad Quezada	50650	CQU230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Venecia 230 kV (50750) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Pailas	51150	PAI230	Liberia	50000	LIB230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Pailas 230 kV (51150) al nodo de la RTR básica básica Liberia 230 kV (50000)
CRI	Caja	53000	CAJ230A	Lindora	53050	LIN230A	230	1	Tramo de la ruta eléctrica más corta para hacer la RTR continua, conectando la caja
		53002	CAJ230B	Lindord				2	230 kV (53000) con lindora 230 kV (53050)
CRI	Garita	53204	GAR138A	La Caja	53004	CAJ138A	138	1	Tramos de la ruta eléctrica más corta para unir el nodo de control Garita 138kV (53204) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Torito	58450	TTO230	Reventazón	58500	REV230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control LEE 230 kV (58200) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	El Este	53550	EST230	Coronado	54200	CON230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Toro 230 kV (50700) al nodo de la RTR básica Parrita 230 kV (54000)

CRI	Cachi	58004	CAC138A	Río Macho	53854	RMA138A	138	1	Tramos de la ruta eléctrica más corta para unir el nodo de control Cachi 138kV (58004) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Turrialba	58054	TUR138	Cachi	58004	CAC138A	138	1	Tramos de la ruta eléctrica más corta para unir el nodo de control Cachi 138kV (58004) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Angostura	58104	ANG138A	Turrialba	58054	TUR138	138	1	Tramos de la ruta eléctrica más corta para unir el nodo de control Angostura 138kV (58104) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Angostura	58104	ANG138A	Cachi	58004	CAC138A	138	1	Tramos de la ruta eléctrica más corta para unir el nodo de control Angostura 138kV (58104) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Miravalles	50250	MIR230A	Mogote	50300	MOG230	230	1	Tramo de la ruta eléctrica más corta para hacer la RTR continua
CRI	Cahuita	58350	CAH230	Moín	58300	MOI230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Moín 230 kV (58300) al nodo de la RTR básica Cahuita 230 kV (58350)
CRI	Peñas Blancas	50800	PBL230	Balsa Inferior	51300	BIN230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Balsa Inferior 230 kV (51300) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Cariblanco	50950	CAR230A	General	54500	GEN230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control GEN 230 kV (54500) al nodo de la RTR básica Parrita 230kV (54000)

CRI	Garita	53200	GAR230	Barranca	50350	BAR230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control GAR 230kV (53200) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Peñas Blancas	50800	PBL230	Ciudad Quezada	50650	CQU230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control CQU 230 kV (50650) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	La Caja	53004	CAJ138A	El Coco	53304	COC138	138	1	Tramos de la ruta eléctrica más corta para unir el nodo de control COC 138kV (53100) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Caja	53006	CAJ138B	Escazú	53354	ESC138	138	1	Tramos de la ruta eléctrica más corta para unir el nodo de control Escazú 138kV (53354) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Cóncavas	53754	COV138	Río Macho	53854	RMA138A	138	1	Tramos de la ruta eléctrica más corta para unir el nodo de control COV 138kV (53754) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Coronado	54200	CON230A	San Miguel	53150	SMI230A	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Coronado 230 kV (54200) al nodo de la RTR básica Cañas 230 kV (50050)
CRI	Venecia	50750	VEN230	Toro	50700	TOR230	230	1	Tramo de la ruta eléctrica más corta para unir el nodo de control Venecia 230 kV (50750) al nodo de la RTR básica Cañas 230 kV (50050)

CRI	Leesville	58200	LEE230	Trapiche	58150	TRA230	230	1	Tramos de la ruta eléctrica más corta para unir el nodo de control LEE 138kV (58200) al nodo de la RTR básica Parrita 230 kV (54000)
CRI	Moín	58300	MOI230A	Trapiche	58150	TRA230	230	1	Tramo de la ruta eléctrica más corta para hacer la RTR continua

Tabla 23. Transformadores de tres devanados que forman parte de la RTR preliminar en el sistema eléctrico de Costa Rica.

					Trans	sformador d	le tres devana	dos		
País		Nodo	desde	Nodo hacia (1)		Nodo l	nacia (2)	X7 - 14 - 3 -		
1 ais	Subestación	No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	Id	Comentario
		F2000		F2004	CA 1120A	53030	CAJAT1T	230/138/	1	
CRI	La Caia	53000		53004	CAJ138A	53031	CAJAT2T	13.8	2	Transformadores que forman parte de la ruta eléctrica más corta que une el
CKI	La Caja	F2002	CAJ230A	52006	53032	CAJAT3T	230/138/	3	nodo de control La Caja 138 kV (53004 y 53006) al nodo de la RTR básica Cañas 230 kV (50050).	
		53002		53006	CAJ138B	53033	CAJAT4T	13.8	4	230 KV (30030).
	53880		RMAAT1T	220/128/	1	Transformadores que forman parte de la ruta eléctrica más corta que une el				
CRI	Rio Macho	53850	RMA230	53854	RMA138A	53881	RMAAT2T	230/138/ 13.8	2	nodo de control Rio Macho 138 kV (53854) al nodo de la RTR básica Parrita 230 kV (54000).

Tabla 24. Nodos que se adicionan como parte de la RTR preliminar en el sistema eléctrico de Panamá

		N	lodo								
País	Nombre	No. Bus (PSS/E)	Voltaje (kV)	Nombre (PSS/E)	Observaciones						
PAN	LMDIST	6074	115	LMDIST	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Las Minas 2 115 kV (6060) al nodo de la RTR básica Veladero 230 kV (6182).						
PAN	Cáceres	6018	115	CAC115	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Santa Rita 115 kV (6173) al nodo de la RTR básica Veladero 230 kV (6182).						
PAN	Panamá	6001	230	PAN230	Nodo que forma parte de la ruta de menor impedancia que conecta el nodo de control Santa Rita 115 kV (6173) al nodo de la RTR básica Veladero 230 kV (6182).						

Tabla 25. Líneas de transmisión que forman parte de la RTR preliminar en el sistema eléctrico de Panamá

					Línea de Transmisión							
País	Nodo desde			Nodo hacia			V 10 1					
rais	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	ld	Comentario			
PAN	Las Minas 2	6060	LM2115	LMDIST	6074	LMDIST	115	26	Tramo de la ruta de menor impedancia que conecta el nodo de control Las Minas II 115 kV (6060) al nodo de la RTR básica Veladero 230 kV (6182).			
PAN	LMDIST	6074	LMDIST	Las Minas 1	6059	LM1115	115	23	Tramo de la ruta de menor impedancia que conecta el nodo de control Las Minas II 115 kV (6060) al nodo de la RTR básica Veladero 230 kV (6182).			

PAN	Cativa	6270	CAT115	Las Minas 1	6059	LM1115	115	0A	Tramo de la ruta de menor impedancia que conecta el nodo de control Cativa 115 kV (6270) al nodo de la RTR básica Veladero 230 kV (6182).
PAN	Cativa II	6290	CATII115	Las Minas 1	6059	LM1115	115	1C	Tramo de la ruta de menor impedancia que conecta el nodo de control Cativa II 115 kV (6290) al nodo de la RTR básica Veladero 230 kV (6182).
PAN	Las Minas 1	6059	LM1115	Santa Rita	6173	STR115	115	2B	Tramo de la ruta de menor impedancia que conecta el nodo de control Las Minas I 115 kV (6059) al nodo de la RTR básica Veladero 230 kV (6182).
PAN	Santa Rita	6173	STR115	Cáceres	6018	CAC115	115	1A	Tramo de la ruta de menor impedancia que conecta el nodo de control Santa Rita 115 kV (6173) al nodo de la
								2A	RTR básica Veladero 230 kV (6182).
PAN	Cáceres	6018	CAC115	Panamá	6002	PAN115	115	37	Tramo de la ruta de menor impedancia que conecta el nodo de control Santa Rita 115 kV (6173) al nodo de la RTR básica Veladero 230 kV (6182).
PAN	Miraflores	6123	MIR115A	Cáceres	6018	CAC115	115	5	Tramo de la ruta de menor impedancia que conecta el nodo de control Miraflores 115 kV (6123) al nodo de la RTR básica Veladero 230 kV (6182).
PAN	Panamá II	6003	PANII230	Panamá	6001	PAN230	230	1C	Tramo de la ruta de menor impedancia que conecta el nodo de control Panamá II 230 kV (6003) al nodo de la
PAIN	Pallallia II	6005	PAINIIZOU	Pallallia	6001	PAIN230	230	2C	RTR básica Veladero 230 kV (6182).
PAN	Panamá	6001	PAN230	Chorrera	6005	CHO230	230	3A 4A	Tramo de la ruta de menor impedancia que conecta el nodo de control Panamá 115 kV (6002) al nodo de la
FAN	Tanama	0001	TANZSO	CHOHEIA	0003	C110230	230	47 48	RTR básica Veladero 230 kV (6182).
								3B	Tramo de la ruta de menor impedancia que conecta el
PAN	Chorrera	6005	CHO230	El Higo	6240	EHIG230	230	4B	nodo de control Chorrera 230 kV (6005) al nodo de la RTR básica Veladero 230 kV (6182).
	E1.11.	60.40	FLUGD22	Llano	5000	164226	220	3C	Tramo de la ruta de menor impedancia que conecta el
PAN	El Higo	6240	EHIG230	Sanchez	6008	LSA230	230	4C	nodo de control El Higo 230 kV (6240) al nodo de la RTR básica Veladero 230 kV (6182).

PAN	El Coco	6460	ECO230	Llano Sanchez	6008	LSA230	230	2B 3B	Tramo de la ruta de menor impedancia que conecta el nodo de control El Coco 230 kV (6460) al nodo de la RTR básica Veladero 230 kV (6182).
PAN	Llano Sanchez	6008	LSA230	Veladero	6182	VEL230	230	51 52 5A	Tramo de la ruta de menor impedancia que conecta el nodo de control Llano Sanchez 115 kV (6009) al nodo de la RTR básica Veladero 230 kV (6182).
PAN	San Bartolo	6520	SBA230	Veladero	6182	VEL230	230	4B	Tramo de la ruta de menor impedancia que conecta el nodo de control San Bartolo 230 kV (6520) al nodo de la
								5B	RTR básica Veladero 230 kV (6182).
PAN	Guasquitas	6179	GUA230	Veladero	6182	VEL230	230	16	Tramo de la ruta de menor impedancia que conecta el nodo de control Guasquitas 230 kV (6179) al nodo de la
. /	Gaasquitas	0173	G071230	Veludero	0102	V 2 2 2 3 0	230	17	RTR básica Veladero 230 kV (6182).
PAN	Bella Vista	6550	BEV230	Veladero	6182	VEL230	230	6B	Tramo de la ruta de menor impedancia que conecta el nodo de control Bella Vista 230 kV (6550) al nodo de la RTR básica Veladero 230 kV (6182).
PAN	Boquerón III	6380	BOQIII230	Progreso	6014	PRO230	230	9B	Tramo de la ruta de menor impedancia que conecta el nodo de control Boqueron III 230 kV (6380) al nodo de la RTR básica Progreso 230 kV (6014).
PAN	La Esperanza	6263	ESP230	Changuinola	6260	CHA230	230	ОВ	Tramo de la ruta de menor impedancia que conecta el nodo de control La Esperanza 115 kV (6263) al nodo de la RTR básica Changuinola 230 kV (6260).
PAN	La Esperanza	6263	ESP230	Fortuna	6096	FOR230	230	0A	Tramo de la ruta de menor impedancia que conecta el nodo de control Fortuna 230 kV (6096) al nodo de la RTR básica Changuinola 230 kV (6260).
PAN	Boquerón III	6380	BOQIII230	Mata de Nance	6011	MDN230	230	9A	Tramo de la ruta de menor impedancia que conecta el nodo de control Mata de Nance 230 kV (6011) al nodo de la RTR básica Veladero 230 kV (6182).

PAN	Veladero	6182	VEL230	Mata de Nance	6011	MDN230	230	5B 6C	Tramo de la ruta de menor impedancia que conecta el nodo de control Mata de Nance 230 kV (6011) al nodo de la RTR básica Veladero 230 kV (6182).
PAN	Fortuna	6096	FOR230	Guasquitas	6179	GUA230	230	18	Tramo de la ruta de menor impedancia que conecta el nodo de control Fortuna 230 kV (6096) al nodo de la RTR básica Veladero 230 kV (6182).
PAN	Llano Sanchez	6008	LSA230	Antón	6830	ANT230	230	9B	Tramo de la ruta de menor impedancia que conecta el nodo de control Antón 230 kV (6830) al nodo de la RTR básica Veladero 230 kV (6182).

Tabla 26. Transformadores de tres devanados que forman parte de la RTR preliminar en el sistema eléctrico de Panamá.

						Transforn	nador de tres	devanados		
		Nodo desde		Nodo hacia (1)		Nodo hacia (2)				
País	Subestación	No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	ld	Comentario
	Panamá	6001			PAN115	6082	PAN13T1	230/115/13.8	T1	
						6083	PAN13T2		T2	Transformadores que forman parte de la ruta eléctrica más corta que une el nodo de
PAN			PAN230	6002		6084	PAN13T3		Т3	control Santa Rita 115 kV (6173) al nodo de la RTR básica Veladero 230 kV (6182).
						6084	PAN13T3		T5	

Cuarto Paso. Líneas que complementan la RTR Preliminar

Para el año 2020, se consideraron las simulaciones del modelo de planeamiento operativo para 60 escenarios (5 bloques de carga en cada mes del año 2020), para los escenarios de los países operando en forma aislada y luego en forma coordinada en el MER. Se comparan los flujos en los elementos de transmisión en las dos situaciones y se decide añadir a la RTR dicho elemento si se cumple con los siguientes criterios

- a) El elemento no es parte de la RTR identificada en los pasos del uno al tres de la metodología.
- b) El cambio en el flujo en el elemento en relación al flujo de intercambio y tránsito MER es mayor que un umbral U= 15%.
- c) La condición "b" ocurre por lo menos en n= en 13 escenarios del total de los 60 analizados. Es decir, la relación P=n/N (probabilidad del evento) es mayor a 20%.

Los parámetros de simulación utilizados en el SDDP son los siguientes:

Definición del Estudio	Parámetros
Etapa Inicial	09/2019
Etapa Final	12/2024
Resolución	Etapas mensuales, con 5 bloques de demanda
Tipo de estudio	Estocástico
Años adicionales para efecto de amortiguamiento	2
Modelo de caudales	Sintéticos ARP
Año inicial de hidrología	2016
Escenarios Forward	100
Escenarios Backward	50
Número mínimo de iteraciones	1
Número máximo de iteraciones	10
Modo operativo	Coordinado
Configuración de restricciones cronológicas	Dinámica
Representación de incertidumbre de las fuentes	Sorteo de escenarios
renovables	
Evaluación de la red eléctrica	Flujo DC con pérdidas, corte de carga en todas las
	barras y monitoreo de límites de la red de
	transmisión (circuitos con tensión >= 115 kV) y
	circuitos inter regionales.

Para definir los límites de transferencias en las interconexiones se utilizaron los valores definidos en el Estudio de Máximas Capacidades de Transferencia de Potencia, de acuerdo a los estudios más recientes de las estaciones verano e invierno, elaborados por el EOR en coordinación con los OS/OM. Los criterios anteriores corresponden a los aprobados por el Comité Técnico de Planeamiento Operativo (CTPO), en la reunión sostenida por medio de videoconferencia el día 29 de octubre 2019.

Los elementos de la red de transmisión que resultaron seleccionados en cada uno de los sistemas nacionales para complementar la RTR preliminar para el año 2020, se detallan en las tablas a continuación.

Tabla No 27. Nodos que forman parte de la RTR complementaria en el sistema eléctrico de Guatemala.

		Node	0				
País	Nombre	Voltaje No. Bus (kV) (PSS/E)		Nombre (PSS/E)	Observaciones		
GUA	Los Brillantes	230	1110	LBR-230	Nodo que se adiciona como parte de la RTR Complementaria		

Tabla No 28. Líneas de transmisión que forman parte de la RTR complementaria en el sistema eléctrico de Guatemala

			Lín	nea de Transmisión						
País		Nodo desde		N	Nodo hacia					
	Nombre	No. Bus Nombre (PSS/E) (PSS/E)		Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	ld		
GUA	Guatemala Este	1107	GES-231	San Antonio el Sitio	1170	SNT-231	230	1		
GUA	Aguacapa	1101	AGU-230	La Vega II	1124	LVG-230	230	2		
GUA	Los Brillantes	1110	LBR-230	Palo Gordo	1145	PGO-230	230	1		

Tabla No 29. Líneas de transmisión que forman parte de la RTR complementaria en el sistema eléctrico de El Salvador.

			Lín	ea de Transmisi	ón			
País		Nodo desde		N	Voltaje			
	Nombre	No. Bus Nombre (PSS/E) (PSS/E)		Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	(kV)	Id
SAL	Ahuachapán	28161	AHU-230	Nejapa	28371	NEJ-230	230	1

Tabla No 30. Nodos que forman parte de la RTR complementaria en el sistema eléctrico de Costa Rica

		Nod	0				
País	Nombre	Voltaje No. Bus (kV) (PSS/E)		Nombre (PSS/E)	Observaciones		
CRI	San Isidro	n Isidro 230 56000 SIS-230		SIS-230	Nodo que se adiciona como parte de la RTR Complementaria		

Tabla No 31. Líneas de transmisión que forman parte de la RTR complementaria en el sistema eléctrico de Costa Rica.

		Línea de Transmisión									
País		Nodo desde		N	Voltaje						
	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	(kV)	ld			
CRI	Rio Macho	53850	RMA230	San Isidro	56000	SIS230	230	1			
CRI	San Isidro	56000	SIS230	Palmar	56100	PAL230	230	1			

Quinto Paso. Verificación por el EOR y OS/OM

Para el quinto paso la metodología del RMER establece: "El EOR en coordinación con los OS/OM nacionales, basándose en estudios regionales de seguridad operativa, podrán añadir elementos a los ya identificados en los pasos uno a cuatro, cuando éstos se muestren necesarios para soportar los Criterios de Calidad, Seguridad y Desempeño".

En este sentido, el EOR ha realizado los análisis técnicos respectivos para identificar los elementos que no resultaron en los pasos del 1 al 4 anteriores, y cuya ausencia no permitiría el cumplimiento de los Criterios de Calidad, Seguridad y Desempeño CCSD) en la RTR. Se evaluarán únicamente los criterios de seguridad de contingencias simples.

La metodología utilizada en el desarrollo de estos análisis fue la siguiente:

a) Escenarios utilizados

Se realizaron las simulaciones para los escenarios de demanda máxima, media y mínima de invierno del año 2020, sin transferencias entre áreas de control, en los cuales se colocaron en servicio todos los tramos de línea del proyecto SIEPAC y todos los proyectos de generación transmisión y demanda que los OS/OM han previsto que entrarán en operación durante el año 2020 con base a la información con que cuentan.

b) Consideraciones Generales

Para el desarrollo de este paso, se realizó el siguiente procedimiento:

- i. La simulación consistió en análisis en régimen permanente (flujos de carga) para el sistema eléctrico regional completo (Situación N), usándose los escenarios definidos en el literal (a) anterior.
- ii. Se simularon contingencias simples (N-1) a las redes de transmisión de cada área de control del SER, desde 69 hasta 400 kV, conforme se define en los CCSD del RMER.
- iii. Tal como se establece en el RMER, los límites de seguridad operativa que se vigilaron a través de las simulaciones ante contingencia simple (N-1) fueron:
 - a. Límite de voltaje: 0.9 1.1 p.u.
 - b. Límite de sobrecarga: No se debe superar el límite térmico continuo, establecido como RATE B en la base de datos del PSS/E.

- iv. Si el elemento en que se aplicó la contingencia simple, causó que se sobrepasen los criterios establecidos de voltaje y sobrecarga en uno o más elementos del SER, dicho elemento se consideró como perteneciente a la RTR.
- v. No obstante, lo anterior, se consideraron las siguientes excepciones para el análisis realizado en el punto (iv):
 - a. Los elementos que presentan problemas de voltaje y sobrecarga en el caso base sin contingencias (Situación N), y que se han identificado como problemas locales que se deben resolver en el área de control, no fueron considerados como parte de la RTR. Ejemplos: barras de distribución y líneas radiales.
 - b. Los elementos que no tienen influencia sobre la operación de la red troncal y que están asociados a problemas locales, no fueron considerados como parte de la RTR. Ejemplos: barras de distribución y líneas radiales.
 - c. No se incluyeron los elementos de transmisión que causen una magnitud de sobrecarga menor al 10% respecto del límite térmico continuo (RATE B).

De conformidad con la aplicación del Paso 5 de la metodología, y con base en estudios de seguridad operativa regionales e informes de eventos relevantes ocurridos en el SER, resultan nodos y elementos adicionales que deben formar parte de la RTR 2020, correspondientes a las áreas de control de Guatemala y Nicaragua, los cuales se detallan en las Tablas No. 32, 33, 34, 35, 36 y 37 más adelante.

Con respecto al nodo Los Brillantes 400 kV en el área de control de Guatemala, éste resulta incluido en la RTR 2020, por su importancia para la operación segura y confiable del SER, así como en el soporte de los Criterios de Calidad, Seguridad y Desempeño (CCSD) establecidos en el RMER, considerando su relevancia en los eventos relevantes ocurridos en el SER. Además, al resultar este nodo como parte de la RTR 2020, en consecuencia, también resultan incluidos otros elementos adicionales asociados a este nodo, en el área de control de Guatemala.

En tal sentido, en el **Anexo A** de este Informe, se adjuntan los principales estudios de seguridad operativa e informe de eventos relevantes ocurridos en el SER, con los cuales se verifica la importancia del nodo Los Brillantes 400 kV, para soportar y verificar el cumplimiento de los CCSD en el SER, tales como:

- Estudios de actualización de los valores límite de las Transferencias México-SER (época húmeda junio 2019-noviembre 2019 y época seca diciembre 2019-mayo 2020).
- Los nodos LBR 400 kV y LBR 230 kV, asociados a la subestación Los Brillantes fueron incluidos en los análisis para el desarrollo de la Consultoría "Ejecución de pruebas y ensayos de campo para la validación y homologación de los parámetros y modelos de equipos de control, análisis modal y participación (Perturbaciones de pequeña señal), y cálculo de ajustes a

equipos de control en unidades de generación del SER y el SEM, para elevar el amortiguamiento de las oscilaciones electromecánicas pobremente amortiguadas" debido a su importante relación con lo que ocurre en el SER ante la aparición de oscilaciones electromecánicas de potencia pobremente amortiguadas.

- Informe final del evento del 20 de enero de 2019 donde la participación del nodo LBR 400 kV fue relevante en la secuencia de dicho evento.
- Informe final del evento del 16 de septiembre de 2019 donde también, la participación del nodo LBR 400 kV fue relevante en la secuencia de dicho evento.

Con base en lo anterior, se confirma que el nodo Los Brillantes 400 kV en el área de control de Guatemala, posee gran importancia a nivel regional, ya que las transferencias de potencia desde México inyectadas a través de dicho nodo, tienen un impacto significativo en la estabilidad del SER.

Cabe señalar que los resultados del paso 5 de la metodología vigente, fueron revisados en la reunión por videoconferencia del Comité Técnico de Seguridad Operativa (CTSO) realizada el día miércoles 27 de noviembre de 2019, donde participaron todos los OS/OM y el EOR.

A continuación, se listan los elementos de transmisión que se adicionan a la RTR para el año 2020:

Tabla No 32. Nodos que se adicionan como parte de la RTR del paso 5 en el sistema eléctrico de Guatemala.

		Nod	0			
País	Nombre	Voltaje (kV)	No. Bus (PSS/E)	Nombre (PSS/E)	Observaciones	
GUA	Los Brillantes	400	1128	LBR-400	Nodo que se adiciona como parte del Paso 5, por seguridad operativa, por ser de gran importancia para mantener los CCSD en el SER	

Tabla 33. Transformadores de dos devanados que se adicionan como parte de la RTR del paso 5 en el sistema eléctrico de Guatemala.

País				s devanados					
	Subestación	Nodo desde		Nodo hacia		W-16-1-			
		No. Bus (PSS/E)	Nombre (PSS/E)	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	ld	Comentario	
GUA	Los Brillantes	1128	LBR-400	1110	LBR-231	400/230	1	Transformador que se adiciona como parte del Paso 5, Por seguridad operativa, para mantener los CCSD en la RTR	

GUA	Los Brillantes	1128	LBR-400	1110	LBR-231	400/230	2	Transformador que se adiciona como parte del Paso 5, Por seguridad operativa, para mantener los CCSD en la RTR
-----	----------------	------	---------	------	---------	---------	---	---

Tabla No34. Línea de transmisión que forma parte de la RTR del paso 5 en el sistema eléctrico de Nicaragua.

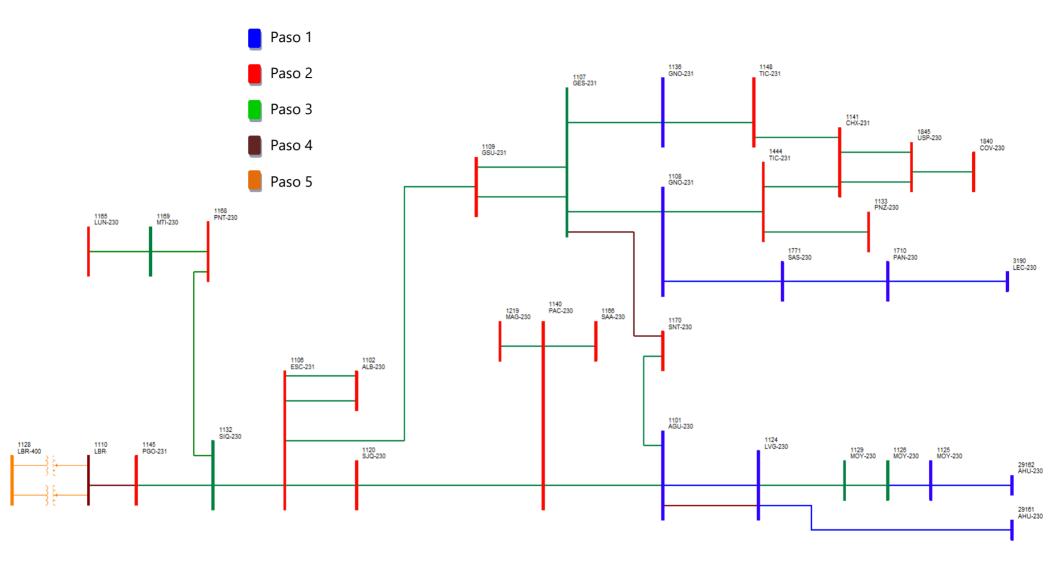
País	Línea de Transmisión										
	1	lodo desde			Nodo hacia	Malka!a					
	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	ld			
NIC	Sandino	4402	SND-230	Mateare 1	4419	MT1-230	230	1			

Tabla 35. Equipos de compensación que forman parte de la RTR del paso 5 en el sistema eléctrico de Nicaragua.

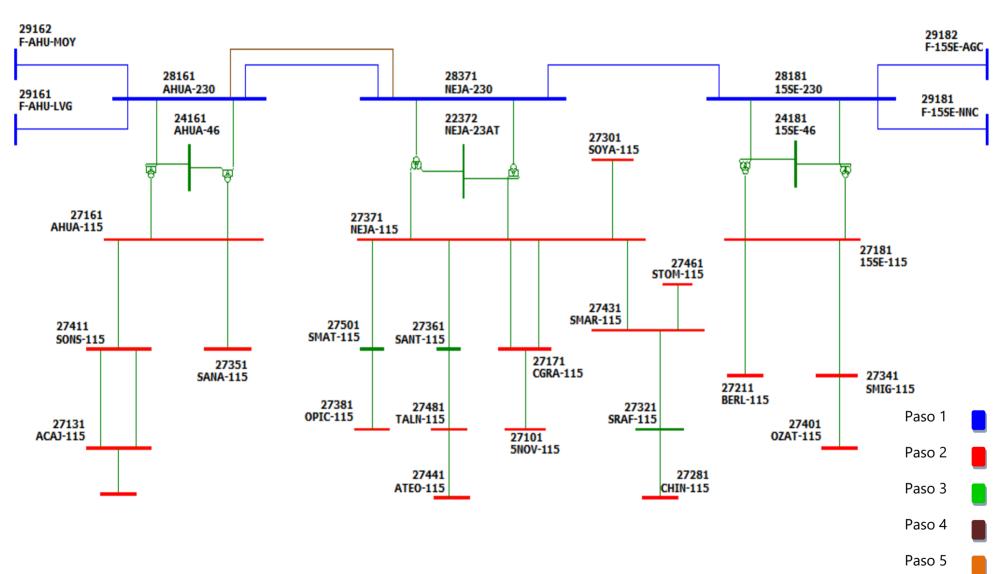
	Equipos de compensación asociados a la RTR 2019										
País	Nombre	Voltaje (kV)	No. Bus (PSS/E)	Nombre (PSS/E)	Equipo						
NIC	Ticuantepe	230	4406	TCP-230	Reactor que se adicionan en el paso 5 por seguridad operativa y mantener los criterios de calidad, seguridad y desempeño en la RTR.						
NIC	Sandino	230	4402	SND-230	Reactor que se adicionan en el paso 5 por seguridad operativa y mantener los criterios de calidad, seguridad y desempeño en la RTR.						

Tabla No36. Nodos que se adicionan como parte de la RTR del paso 5 en el sistema eléctrico de Panamá.

		N	odo						
País	I Nombre I		Voltaje No. Bus (kV) (PSS/E)		Observaciones				
PAN	Santa Maria	115	6036	SMA115	Nodo que se adiciona como parte del Paso 5, Por seguridad operativa, para mantener los CCSD en la RTR				
PAN	Pacora	230	6171	PAC230	Nodo que se adiciona como parte del Paso 5, Por seguridad operativa, para mantener los CCSD en la RTR				
PAN	Bayano	230	6100	BAY230	Nodo que se adiciona como parte del Paso 5, Por seguridad operativa, para mantener los CCSD en la RTR				
PAN	Vista Hermosa	230	6243	VHE230	Nodo que se adiciona como parte del Paso 5, Por seguridad operativa, para mantener los CCSD en la RTR				

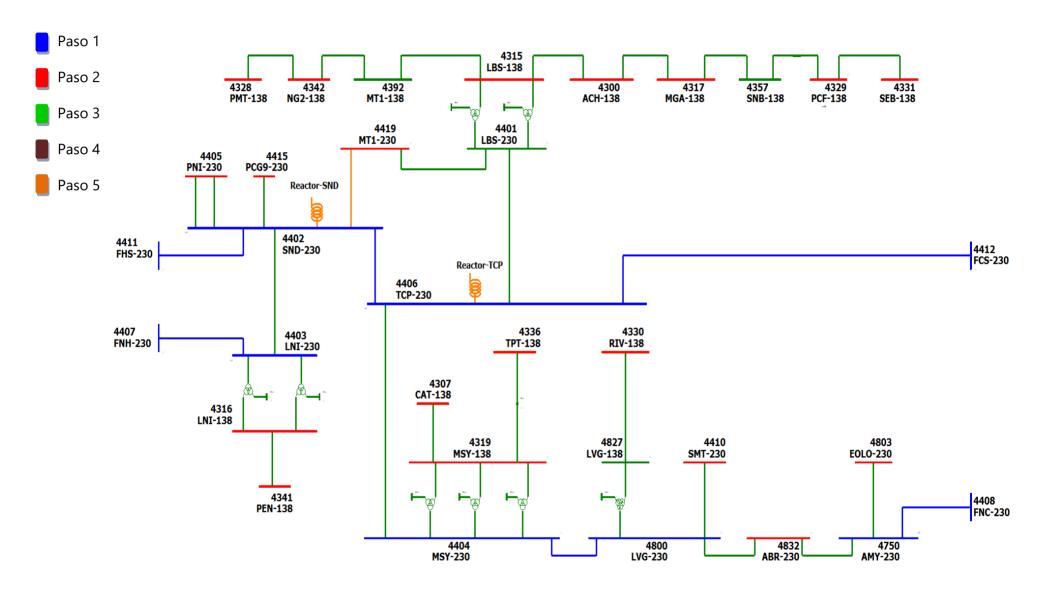

Tabla No 37. Línea de transmisión que se adiciona para hacer la RTR del paso 5 continua, en el sistema eléctrico de Panamá.

	Línea de Transmisión										
País		Nodo desde			Nodo hacia						
Pais	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Nombre	No. Bus (PSS/E)	Nombre (PSS/E)	Voltaje (kV)	ld			
PAN	Panamá	6002	PAN115	Santa Maria	6036	SMA115	115	7			
PAN	Panamá II	6003	PANII230	Pacora	6171	PAC230	230	1B			
PAN	Pacora	6171	PAC230	Bayano	6100	BAY230	230	1A			
PAN	Bayano	6100	BAY230	Vista Hermosa	6243	VHE230	230	2A			


DIAGRAMA UNIFILAR RTR 2020 – GUATEMALA

Colonia San Benito, Ave. Las Magnolias, N°128, San Salvador, El Salvador, C.A. PBX: (503) 2245-9000 **I** FAX: (503) 2208-2368 info@enteoperador.org **I** www.enteoperador.org

DIAGRAMA UNIFILAR RTR 2020 – EL SALVADOR



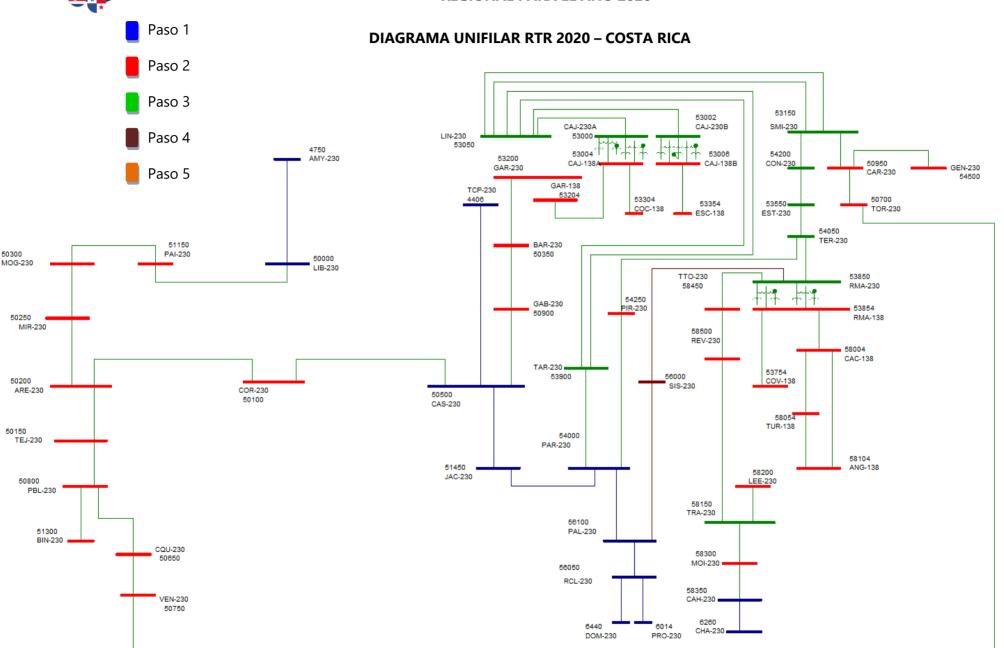

DIAGRAMA UNIFILAR RTR 2020 HONDURAS CHM B539 MAS B544 TSZ B526 BIJ B562 BCO 138 VNU B520 AGP B556 CAR B540 SPS B558 MER 138 LPT B503 LEC B619 SBV B609 RET 138KV CIR B537 BER B507 SMT B534 F-LEC-PAN PGR B509 T43 CJN VEG B607 PGR B603 T43 AMT 3060 3427 CYG B536 AMT B541 CJN B601 RLN B521 AMT B605 CRL B501 Paso 1 Paso 2 SUY B612 CDH B629 Paso 3 TER PGR 1 Paso 4 SFE B505 TON B535 TON B610 Paso 5 AGC B624 PAV B620 SLU B637 PRD B618 AGF B641 NNC B639 FNH-230 F-15SE-NNC FHS-230 F-15SE-AGC

DIAGRAMA UNIFILAR RTR 2020 - NICARAGUA

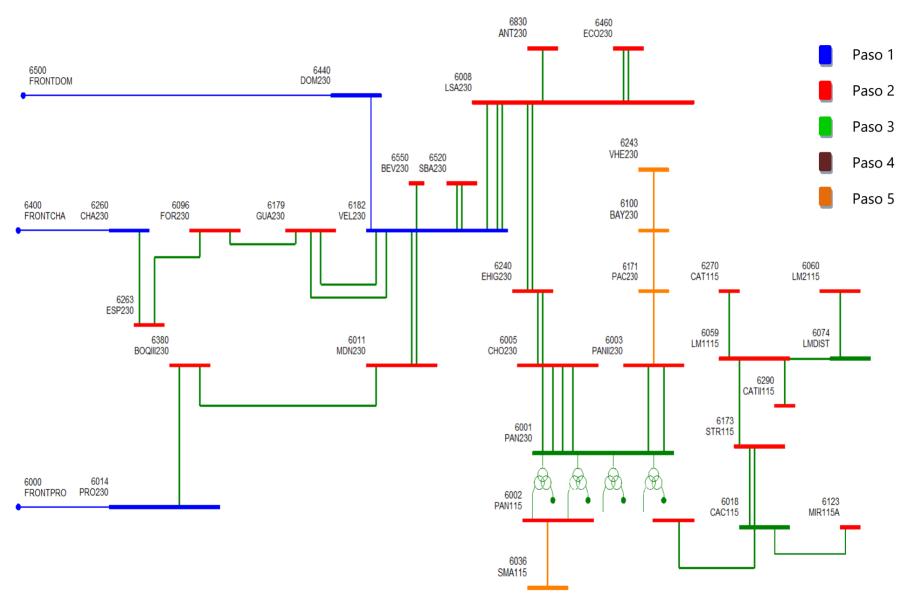


DIAGRAMA UNIFILAR RTR 2020 – PANAMÁ

